Tìm hoành độ giao điểm của đồ thị hàm số
Phương pháp giải
+ Điểm M(x0; y0) thuộc đồ thị hàm số y = f(x) ⇔ y0 = f(x0).
+ Hoành độ giao điểm của đồ thị hàm số y = f(x) và y = g(x) là nghiệm của phương trình f(x) = g(x).
Ví dụ minh họa
Ví dụ 1: Những điểm nào dưới đây thuộc đồ thị hàm số y = 2×2 + 3x + 1.
A(0; 3); B(0; 1); C(1; 0); D (-1/2;0) E(-1; 0).
Hướng dẫn giải:
Đặt f(x) = 2×2 + 3x + 1.
Ta có:
+ f(0) = 2.02 + 3.0 + 1 = 1 ⇒ A(0; 3) không thuộc đồ thị hàm số và B(0; 1) thuộc đồ thị hàm số.
+ f(1) = 2.12 + 3.1 + 1 = 6 ⇒ C(1; 0) không thuộc đồ thị hàm số.
+ f(-1/2) = 2.(-1/2)2 + 3(-1/2) + 1 = 0 ⇒ D(-1/2;0) thuộc đồ thị hàm số.
+ f(-1) = 2.(-1)2 + 3.(-1) + 1 = 0 ⇒ E(-1; 0) thuộc đồ thị hàm số.
Ví dụ 2: Tìm m để A(1; 2) thuộc các đồ thị hàm số dưới đây:
a) y = f(x) = x2 + 2x + m
Hướng dẫn giải:
a) A(1; 2) thuộc đồ thị hàm số y = f(x) = x2 + 2x + m
⇔ 2 = 12 + 2.1 + m
⇔ m = -1.
Vậy m = -1.
b) A(1; 2) thuộc đồ thị hàm số
⇔ m = 0.
Vậy m = 0.
c) A(1; 2) thuộc đồ thị hàm số
⇔ m + 2 = 4
⇔ m = 2.
Vậy m = 2.
Ví dụ 3: Tìm giao điểm của hai đồ thị hàm số y = 2×2 + 3x + 1 và y = x + 1.
Hướng dẫn giải:
Hoành độ giao điểm của hai hàm số là nghiệm của phương trình:
2×2 + 3x + 1 = x + 1
⇔ 2×2 + 2x = 0
⇔ 2x(x + 1) = 0
+ Với x = 0 thì y = x + 1 = 1.
+ Với x = -1 thì y = x + 1 = 0.
Vậy hai đồ thị hàm số trên có 2 giao điểm là A(0; 1) và B(-1; 0).
Bài tập trắc nghiệm tự luyện
Bài 1: Điểm nào dưới đây thuộc đồ thị hàm số y = 2×2 + x.
A. (0; 0) B. (0; 1). C. (1; 0) D. (2; 0).
Bài 2: Điểm A(1; 0) không thuộc đồ thị hàm số nào dưới đây?
⇔ m + 2 = 4
Bài 3: Với giá trị nào của a dưới đây thì đồ thị hàm số y = 3×2 + ax + 1 đi qua điểm M(-2; 0).
A. a = 13/2 B. a = 13.
C. a = -13 D. a = -13/2.
Bài 4: Hoành độ giao điểm của đồ thị hàm số y = x + 1 và y = 2x + 1 là:
A. x = 0 B. x = -1 C. x = -1/2 D. x = -2.
Bài 5: Số giao điểm của đồ thị hàm số y = √(x-1) và y = x – 1 là:
A. 0 B. 1 C. 2 D. Vô số.
Bài tập tự luận tự luyện
Bài 6: Tìm một điểm bất kì thuộc đồ thị hàm số y = 2×2 + x + 3.
Hướng dẫn giải:
y = 2×2 + x + 3
Chọn x = 1 ⇒ y = 2.12 + 1 + 3 = 6.
Vậy chọn được điểm (1; 6) thuộc đồ thị hàm số.
Lưu ý: Các bạn có thể chọn được vô số điểm khác.
Bài 7: Tìm điểm thuộc đồ thị hàm số có tung độ bằng 2.
Hướng dẫn giải:
Xét ⇔ x + 3 = 2(x – 1) ⇔ x + 3 = 2x – 2 ⇔ x = 5.
Vậy điểm có tung độ bằng 2 thuộc đồ thị hàm số là (5; 2).
Bài 8: Tìm a để đồ thị hàm số y = 3×2 + 2ax + 1 đi qua điểm M(-2; 2).
Hướng dẫn giải:
Đồ thị hàm số y = 3×2 + 2ax + 1 đi qua điểm M(-2; 2)
⇔ 3.(-2)2 + 2.a.(-2) + 1 = 2
⇔ 13 – 4a = 2
⇔ 4a = 11
⇔ a = 11/4 .
Vậy a = 11/4 .
Bài 9: Tìm giao điểm của đồ thị hàm số y = 3×2 + x – 2 và y = 2×2 – x + 1.
Hướng dẫn giải:
Hoành độ giao điểm của hai đồ thị hàm số là nghiệm của phương trình:
3×2 + x – 2 = 2×2 – x + 1
⇔ x2 + 2x – 3 = 0
⇔ (x – 1)(x + 3) = 0
+ Với x = 1 thì y = 3.12 + 1 – 2 = 2
+ Với x = -3 thì y = 3.(-3)2 + (-3) – 2 = 22
Vậy hai đồ thị hàm số trên có hai giao điểm là (1 ; 2) và (-3 ; 22).
Bài 10: Tìm a; b để đồ thị hàm số y = ax2 + x + b đi qua A(1; 2) và B(2; 0).
Hướng dẫn giải:
Đồ thị hàm số y = ax2 + x + b đi qua A(1; 2) và B(2; 0)
Vậy a = -1; b = 2.
Xem thêm các dạng bài tập Toán lớp 9 có đáp án và lời giải chi tiết khác:
- Phương pháp Tìm tập xác định của hàm số
- Phương pháp Tìm tập giá trị của hàm số
- Xét tính đồng biến, nghịch biến của hàm số
- Cách xác định hàm số bậc nhất: tập xác định, đồng biến, nghịch biến
- Cách làm bài toán Đồ thị hàm số lớp 9 cực hay có giải chi tiết
- Bài toán hai đường thẳng song song, cắt nhau, trùng nhau
- Cách làm Bài toán đường thẳng đi qua điểm cố định cực hay
- Bài toán Đồ thị hàm số trị tuyệt đối cực hay
Mục lục các Chuyên đề Toán lớp 9:
- Chuyên đề Đại Số 9
- Chuyên đề: Căn bậc hai
- Chuyên đề: Hàm số bậc nhất
- Chuyên đề: Hệ hai phương trình bậc nhất hai ẩn
- Chuyên đề: Phương trình bậc hai một ẩn số
- Chuyên đề Hình Học 9
- Chuyên đề: Hệ thức lượng trong tam giác vuông
- Chuyên đề: Đường tròn
- Chuyên đề: Góc với đường tròn
- Chuyên đề: Hình Trụ – Hình Nón – Hình Cầu
Ngân hàng trắc nghiệm lớp 9 tại khoahoc.vietjack.com
- Hơn 20.000 câu trắc nghiệm Toán,Văn, Anh lớp 9 có đáp án
Tôi là Nguyễn Văn Sỹ có 15 năm kinh nghiệm trong lĩnh vực thiết kế, thi công đồ nội thất; với niềm đam mê và yêu nghề tôi đã tạo ra những thiết kếtuyệt vời trong phòng khách, phòng bếp, phòng ngủ, sân vườn… Ngoài ra với khả năng nghiên cứu, tìm tòi học hỏi các kiến thức đời sống xã hội và sự kiện, tôi đã đưa ra những kiến thức bổ ích tại website nhaxinhplaza.vn. Hy vọng những kiến thức mà tôi chia sẻ này sẽ giúp ích cho bạn!