Chuyên đề luyện thi vào 10: Tâm đường tròn nội tiếp, đường tròn ngoại tiếp tam giác và đường tròn ngoại tiếp tam giác
***=====>>>>Phần Mềm Giải Bài Tập Chính Xác 100%
Xem Ngay!!!
I. Cách xác định tâm của đường tròn
Bài toán xác định tâm đường tròn ngoại tiếp, đường tròn nội tiếp tam giác hay tâm đường tròn ngoại tiếp tứ giác là một dạng toán thường có trong các đề thi tuyển sinh vào lớp 10 môn Toán gần đây. Tài liệu được smarthack.vn biên soạn và giới thiệu tới các bạn học sinh cùng quý thầy cô tham khảo. Nội dung tài liệu sẽ giúp các bạn học sinh học tốt môn Toán lớp 9 hiệu quả hơn. Mời các bạn tham khảo.Bạn đang xem: Chứng minh tam giác nội tiếp đường tròn
Để tiện trao đổi, chia sẻ kinh nghiệm về giảng dạy và học tập các môn học lớp 9, smarthack.vn mời các thầy cô giáo, các bậc phụ huynh và các bạn học sinh truy cập nhóm riêng dành cho lớp 9 sau: Nhóm Luyện thi lớp 9 lên 10. Rất mong nhận được sự ủng hộ của các thầy cô và các bạn.
Tài liệu dưới đây được smarthack.vn biên soạn gồm hướng dẫn giải chi tiết cho dạng bài liên quan đến việc xác định tâm đường tròn ngoại tiếp và nội tiếp của tam giác và tứ giác đồng thời tổng hợp các bài toán để các bạn học sinh có thể luyện tập thêm. Qua đó sẽ giúp các bạn học sinh ôn tập các kiến thức, chuẩn bị cho các bài thi học kì và ôn thi vào lớp 10 hiệu quả nhất. Sau đây mời các bạn học sinh cùng tham khảo tải về bản đầy đủ chi tiết.Xem thêm: Soạn Mĩ Thuật Lớp 8 Bài 24: Vẽ Về Ước Mơ Của Em Đẹp, Đơn Giản Và Ý Nghĩa Nhất
I. Cách xác định tâm của đường tròn
1. Xác định tâm của đường tròn ngoại tiếp tam giác
+ Tâm của đường tròn ngoại tiếp tam giác là giao điểm ba đường trung trực của ba cạnh tam giác
+ Trong tam giác vuông, trung điểm của cạnh huyền chính là tâm của đường tròn ngoại tiếp tam giác vuông ấy
2. Xác định tâm của đường tròn nội tiếp tam giác
+ Tâm của đường tròn nội tiếp tam giác là giao điểm ba đường phân giác kẻ từ 3 đỉnh của tam giác
3. Xác định tâm của đường tròn ngoại tiếp tứ giác
+ Tứ giác có bốn đỉnh các đều một điểm. Điểm đó là tâm đường tròn ngoại tiếp tam giác
+ Lưu ý: Quỹ tích các điểm nhìn đoạn thẳng AB dưới một góc vuông là đường tròn đường kính AB
II. Bài tập ví dụ cho các bài tập về tâm của đường tròn
Bài 1: Cho tam giác ABC cân tại A. Các đường cao AD, BE và CF cắt nhau tại H. Chứng minh tứ giác AEHF là tứ giác nội tiếp. Xác định tâm I của đường tròn ngoại tiếp tứ giác đó.
Lời giải:
+ Gọi I là trung điểm của AH
+ Có HF vuông góc với AF (giả thiết) suy ra tam giác AFH vuông tại F
I là trung điểm của cạnh huyền AH
Suy ra IA = IF = IH (1)
+ Có HE vuông góc với AE (giả thiết) suy ra tam giác AEH vuông tại E
I là trung điểm của cạnh huyền AH
Suy ra IA = IE = IH (2)
+ Từ (1) và (2) suy ra IA = IF = IH = IE
Hay I cách đều bốn đỉnh A, E, H, F
Suy ra tứ giác AEHF nội tiếp đường tròn có tâm I là trung điểm của AH
Bài 2: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H và cắt đường tròn (O) lần lượt tại M, N, P
a, Chứng minh tứ giác CEHD là tứ giác nội tiếp
b, Chứng minh 4 điểm B, C, E, F cùng nằm trên một đường tròn
c, Xác định tâm đường tròn nội tiếp tam giác DEF
Lời giải:
a, + Có AD là đường cao của tam giác ABC (giả thiết)
+ Có BE là đường cao của tam giác ABC (giả thiết)
+ Xét tứ giác CEHD có:
Mà hai góc ở vị trí đối nhau
Suy ra tứ giác CEHD là tứ giác nội tiếp
b, + Gọi K là trung điểm của đoạn thẳng BC
+ Xét tam giác BEC có:
(BE là đường cao của tam giác)
K là trung điểm của đoạn thẳng BC
Suy ra KE = KB = KC (1)
+ Xét tam giác BFC có:
(CF là đường cao của tam giác)
K là trung điểm của đoạn thẳng BC
Suy ra KF = KB = KC (2)
+ Từ (1), (2) suy ra KE = KB = KC = KF hay điểm K cách đều 4 điểm F, E, C, B
Suy ra tứ giác FECB nội tiếp đường tròn tâm K là trung điểm của BC
c, + Có FECB nội tiếp đường tròn
(góc nội tiếp cùng chắn cung FB)
Lại có CEHD là tứ giác nội tiếp
(góc nội tiếp cùng chắn cung HD)
Suy ra
hay EB là tia phân giác của góc FED
+ Chứng minh tương tự ta cũng có FC là tia phân giác của góc DFE
Mà BE và CF cắt nhau tại H nên H là tâm đường tròn nội tiếp tam giác DEF
III. Bài tập tự luyện các bài toán xác định tâm của đường tròn
Bài 1: Các đường cao AD, BE của tam giác ABC cắt nhau tại H (góc C khác góc vuông) và cắt đường tròn (O) ngoại tiếp tam giác ABC lần lượt tại I và K.
a, Chứng minh tứ giác CDHE nội tiếp và xác định tâm của đường tròn ngoại tiếp tứ giác đó
b, Chứng minh tam giác CIK là tam giác cân
Bài 2: Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn (O; R). Ba đường của tam giác là AF, BE và CD cắt nhau tại H. Chứng minh tứ giác BDEC là tứ giác nội tiếp. Xác định tâm I của đường tròn ngoại tiếp tứ giác
Chuyên mục:
Tôi là Nguyễn Văn Sỹ có 15 năm kinh nghiệm trong lĩnh vực thiết kế, thi công đồ nội thất; với niềm đam mê và yêu nghề tôi đã tạo ra những thiết kếtuyệt vời trong phòng khách, phòng bếp, phòng ngủ, sân vườn… Ngoài ra với khả năng nghiên cứu, tìm tòi học hỏi các kiến thức đời sống xã hội và sự kiện, tôi đã đưa ra những kiến thức bổ ích tại website nhaxinhplaza.vn. Hy vọng những kiến thức mà tôi chia sẻ này sẽ giúp ích cho bạn!