Lưu ngay Top cách bấm máy tính giải phương trình bậc 2 vinacal hot nhất hiện nay 2023

Hiện nay việc giải các phương trình cơ bản trong môn Toán đã có sự hỗ trợ rất lớn từ Máy tính cầm tay. Trong đó Casio là một hãng máy tính được tin dùng bởi dễ sử dụng, chính xác và giá cả hợp lý. Gia Sư Việt sẽ hướng dẫn cách giải các phương trình Toán học bằng Máy tính Casio Fx – 570 MS Plus sẽ giúp học sinh có thể nhanh chóng áp dụng. Sau đó tìm ra kết quả và đối chiếu với phương pháp giải phương trình thông thường.

Đang xem: Cách giải phương trình bậc nhất bằng máy tính fx570es

Cách giải các dạng phương trình Toán bằng máy tính Casio

1. Phương trình bậc nhất một ẩn

Phương trình có dạng ax + b = 0, với a, b là những hằng số; a ≠ 0 được gọi là phương trình bậc nhất một ẩn số, b gọi là hạng tử tự do. Đối với phương trình này chỉ cần tính x = – b / a là xong.

2. Các phương trình bậc cao một ẩn

Phương trình bậc 2 một ẩn

Phương trình bậc 2 có dạng: ax2+ bx + c = 0; trong đó x là ẩn số; a, b, c là các hệ số đã cho; a ≠ 0.

Cách bấm máy tính: Đầu tiên ấn vào mode, sau đó chọn (5 – EQN), tiếp theo chọn phím (3) sẽ ra phương trình bậc 2 một ẩn. Tiếp đến nhập các hằng số a = ?, b = ?, c = ?. Hết các bước trên, máy tính sẽ hiện ra các nghiệm của bài toán.

Giải phương trình bậc 3 một ẩn

Phương trình bậc 3 có dạng: ax3 + bx2 + cx + d =0 ( trong đó x là ẩn; a, b, c, d là các hệ số; a ≠ 0 )

Đầu tiên ấn vào mode, sau đó chọn (5 – EQN), tiếp theo chọn phím (4) sẽ ra phương trình bậc 3 một ẩn. Tiếp đến nhập các hằng số a = ?, b = ?, c = ?, d = ? Hết các bước trên, máy tính sẽ hiện ra các nghiệm của bài toán.

Phương trình trùng phương bậc 4

Phương trình trùng phương có dạng tổng quát: ax4 + bx2 + c = 0. Trong đó x là ẩn; a, b, c là các hệ số; (a ≠ 0)

Ví dụ: giải phương trình sau: 4×4 – 109×2 + 225 = 0

Ấn 4 ALPHA X4 – 109 ALPHA X2 + 225 ALPHA = 0; Sau đó ấn tiếp SHIFT SOLVE và Máy sẽ hỏi X? ( yêu cầu nhập giá trị ban đầu để dò nghiệm ). Sau đó ấn 1 = SHIFT SOLVE và đợi máy tính toán giây lát.

Kết quả: x1= ; x2 = ; x3 = 5; x4 = – 5.

Ta có thể cho giá trị ban đầu lớn hơn hoặc nhỏ hơn nghiệm vừa tìm được để dò nghiệm ( các phương trình khác nếu cho giá trị ban đầu là số lớn thì máy tính sẽ lâu hơn hoặc sẽ báo ngoài khả năng tính toán ).

Phương trình hệ số đối xứng bậc 4

Phương trình có dạng: ax4 + bx3+ cx2 + dx + e = 0. Trong đó x là ẩn, a, b, c, d, e là các hệ số; (a ≠ 0)

Đặc điểm: Ở vế trái các hệ số của các số hạng cách đều số hạng đầu và số hạng cuối thì bằng nhau

Ví dụ: Giải phương trình sau: 10×4 – 27×3 – 110×2 – 27x + 10 = 0

Ấn 10 ALPHA X4 − 27 ALPHA X3 – 110 ALPHA X2 – 27X + 10 ALPHA = 0. Sau đó ấn tiếp tổ hợp SHIFT SOLVE và Máy sẽ hỏi X? ( yêu cầu nhập giá trị ban đầu để dò nghiệm ). Tiếp túc ấn 1 = SHIFT SOLVE đợi máy tính toán giây lát để thu được kết quả nghiệm.

Phương trình dạng đặc biệt khác

(x+a).(x+b).(x+c).(x+d) = m; với (a + d = b +c)

Ví dụ: Giải phương trình (x +1).(x+3).(x+5).(x+7) = -15

Ấn (ALPHA X + 1).(ALPHA X + 3).(ALPHA X+ 5).(ALPHA X +7) = -15. Sau đó ấn tiếp SHIFT SOLVE và Máy hỏi X? ( Máy yêu cầu nhập giá trị ban đầu để dò nghiệm ). Ấn 1 = SHIFT SOLVE đợi Máy tính giây lát để ra nghiệm.