Tổng hợp Top cách giải nhanh hình học không gian hot nhất hiện nay 2023

Hình học không gian là một chuyên đề khó trong số các chuyên đề Hình học ôn thi THPT Quốc gia. Dưới đây là tổng hợp các công thức hình học không gian dành cho 2k3 dễ dàng ôn tập.

Bản PDF đầy đủ tải TẠI ĐÂY

Tổng hợp kiến thức toán 12 – Công thức phần đại số đầy đủ nhất

104 trang CÔNG THỨC TÍNH NHANH Toán 12 bất chấp đề dài, đề khó

Các công thức hình học không gian lớp 12

1, Nhắc lại các hình cơ bản

Hình tứ diện đều: Có 4 mặt là các tam giác đều bằng nhau. Chân đường cao trùng với tâm của đáy (hay trùng với trọng tâm của tam giác đáy). Các cạnh bên tạo với mặt đáy các góc bằng nhau

Hình chóp đều: Có đáy là đa giác đều. Có các mặt bên là những tam giác cân bằng nhau. Chân đường cao trùng với tâm của đa giác đáy. Các cạnh bên tạo với mặt đáy các góc bằng nhau

Đường thẳng d vuông góc với mặt phẳng (α)

Đường thẳng d vuông góc với 2 đường thẳng cắt nhau cùng nằm trong mặt phẳng (α) thì d sẽ vuông góc với mặt phẳng (α)

Đường thẳng d vuông góc với mặt phẳng (α) thì d vuông góc với mọi đường thẳng trong mặt phẳng (α)

Tổng hợp công thức toán hình 12 về các khối đa diện

Thể tích khối lăng trụ: V = Bh (B: diện tích đáy; h: chiều cao)

Thể tích khối chóp: V = 1/3 Bh (diện tích đáy là đa giác)

Diện tích xung quanh của hình nón tròn xoay: Sxq = π R l (R: bán kính đường tròn; l: đường sinh)

Thể tích của khối nón tròn xoay: V = 1/3 Bh (diện tích đáy là đường tròn)

Thể tích xung quanh của hình trụ tròn xoay: Sxq = 2 π R l (R: bán kính đường tròn; l: đường sinh)

Thể tích của khối trụ tròn xoay: V = Bh = π R2 h ( h: chiều cao khối trụ)

Diện tích mặt cầu: S = 4 π R2 (R: bán kính mặt cầu)

Thể tích khối nón tròn xoay: V = 4/ 3 π R3 (R: bán kính mặt cầu)

Tài liệu được tổng hợp từ bộ sách Đột phá 8+ môn Toán (phiên bản 2020) của NXB ĐHQG Hà Nội. Phiên bản 2020 của bộ sách trình bày toàn bộ kiến thức bằng INFOGRAPHIC, tăng cường các bài tập khó và tích hợp các tiện ích học tập mới: video bài giảng, livestream nâng cao kiến thức hàng tuần, nhóm học tập, hệ thống thi thử cctest,…

Đọc toàn bộ sách Đột phá 8+ phiên bản 2020 tại đây

Các công thức hình học phẳng lớp 12

1, Tỉ số góc nhọn trong tam giác vuông

sin α = cạnh đối/ cạnh huyền

cos α = cạnh kề/ cạnh huyền

tan α = cạnh đối/ cạnh kề

cot α = cạnh kề/ cạnh đối

2, Hệ thức lượng trong tam giác vuông

Định lý Pytago: bình phương cạnh huyền bằng tổng bình phương hai cạnh góc vuông

Công thức toán hình 12 phần Hệ thức lượng trong tam giác vuông:

Từ điểm góc vuông kẻ đường cao xuống cạnh huyền thì ta có bình phương cạnh góc vuông sẽ bằng tích cạnh huyền nhân với hình chiếu tương ứng của cạnh góc vuông trên cạnh huyền

Còn bình phương đường cao sẽ bằng tích hai hình chiếu trên cạnh huyền

Tích hai cạnh góc vuông sẽ bằng tích đường cao nhân với cạnh huyền

Nghịch đảo của bình phương đường cao sẽ bằng tổng của nghịch đảo bình phương hai cạnh góc vuông

3, Định lý cosin

Trong một tam giác, Bình phương một cạnh sẽ bằng tổng bình phương 2 cạnh còn lại trừ đi tích của hai lần cạnh còn lại nhân với góc tương ứng của cạnh cần tính

Cho tam giác ABC với a, b, c lần lượt là số đo của cạnh BC, AC và AB. Ta có công thức của định lý cosin như sau

a2 = b2 + c2 – 2bc cos A

b2 = a2 + c2 – 2ac cosB

c2 = a2 + b2 – 2ab cosC

4, Định lý sin

Trong một tam giác, a có tỉ số giữa một cạnh và sin góc tương ứng sẽ bằng 2 lần bán kính đường tròn ngoại tiếp tam giác

Ta có công thức a/ sinA = b/ sinB = c/ sinC = 2R

5, Định lý Ta-let

Trong tam giác ABc bất kì, kẻ đường thẳng MN (M thuộc AB, N thuộc AC) sao cho MN song song BC, ta có công thức như sau

AM/ AB = AN/ NC = MN/ BC

AM/ MB = AN/ NC

6, công thức toán hình 12 phần diện tích hình phẳng

6.1 Tam giác thường

Công thức 1: Diện tích tam giác bằng ½ tích của đường cao nhân với cạnh tương ứng với đường cao

Công thức 2: Diện tích tam giác bằng căn bậc hai của tích: nửa chu vi tam giác nhân với lần lượt hiệu của nửa chu vi trừ đi mỗi cạnh (công thức Hê-rông)

Gọi 3 cạnh của tam giác lần lượt là a, b, c và nửa chu vi của tam giác là p, ta có công thức Hê-rông như sau

Công thức 3: Diện tích tam giác bằng tích của nửa chu vi nhân với bán kính đường tròn nội tiếp tam giác: S = p. r

6.2 Tam giác đều cạnh a

Tam giác đều thì đường cao cũng là đường trung tuyến, đường phân giác và đường trung trực

Công thức tính đường cao, diện tích của tam giác đều cạnh a như sau

6.3 tam giác vuông

Diện tích tam giác vuông bằng ½ tích của hai cạnh góc vuông. Với tam giác ABC vuông tại A thì diện tích tam giác ABC sẽ bằng ½ . AB. AC

Chú ý: Trong tam giác vuông thì tâm đường tròn ngoại tiếp tam giác là trung điểm cạnh huyền

6.4. Tam giác vuông cân (nửa hình vuông)

Diện tích tam giác vuông cân sẽ bằng một nửa của bình phương cạnh góc vuông (do hai cạnh góc vuông bằng nhau). Công thức: S = ½ . a2 với a là cạnh góc vuông

6.5. Tam giác cân

Diện tích tam giác cân được tính bằng công thức: S = ½ a.h với a là cạnh đáy và h là đường cao

Đường cao hạ từ đỉnh cũng là đường trung tuyến, đường phân giác, đường trung trực

6.6. Các hình tứ giác và hình tròn

  • Hình chữ nhật: Diện tích bằng tích của chiều dài và chiều rộng hình chữ nhật
  • Hình thoi: Diện tích hình thoi bằng ½ tích của hai đường chéo
  • Hình vuông: Diện tích hình vuông bằng bình phương số đo cạnh
  • Hình bình hành: Diện tích bằng tích của một cạnh và đường cao
  • Đường tròn có chu vi bằng 2 lần bán kính đường tròn nhân với số Pi

C = 2. π. R

  • Diện tích hình tròn bằng bình phương bán kính đường tròn nhân số Pi

S = R2. π