7 Cách chứng minh 3 đường thẳng đồng quy

Cách chứng minh 3 đường thẳng đồng quy là một trong những kiến thức quan trọng giúp các em học sinh lớp 9 giải được các dạng bài tập Hình học. Vậy ba đường thẳng đồng quy là gì, cách chứng minh 3 đường thẳng đồng quy như thế nào? Mời các em học sinh hãy cùng Download.vn theo dõi bài viết dưới đây nhé.

Thông qua tài liệu cách chứng minh 3 đường thẳng đồng quy kèm theo một số bài tập có đáp án giúp học sinh củng cố, nắm vững chắc kiến thức nền tảng, vận dụng với các bài tập cơ bản để đạt được kết quả cao trong kì thi sắp tới. Bên cạnh đó các bạn xem thêm công thức tính chu vi hình chữ nhật , công thức tính diện tích hình vuông.

1. Ba đường thẳng đồng quy là gì?

Định nghĩa về ba đường thẳng đồng quy được diễn giải như sau: “Cho ba đường thẳng lần lượt là a, b, c không trùng với nhau. Nếu ba đường thẳng a,b,c cùng đi qua một điểm O nào đó thì ta sẽ gọi đó là đồng quy.

2. Tính chất của 3 đường thẳng đồng quy

– Nếu hai đường cao của tam giác cắt nhau tại một điểm cụ thể thì từ đó có thể suy ra đường cao thứ 3 cũng sẽ cùng đi qua giao điểm đó.

– Nếu ba đường trung tuyến của một tam giác đồng quy tại 1 điểm thì điểm này sẽ được gọi là trọng tâm của tam giác.

– Ba đường cao trong một tam giác đồng quy tại 1 điểm thì điểm này sẽ được gọi là trực tâm của tam giác.

– Nếu hai đường trung tuyến trong tam giác bất kỳ cắt nhau tại một điểm thì từ đó ta có thể suy ra đường trung tuyến thứ 3 chắc chắn cũng đi qua giao điểm đó. Trọng tâm sẻ chia đoạn thẳng trung tuyến thành 3 phần: Từ trọng tâm lên tới đỉnh chiếm tới 2/3 độ dài của trung tuyến đó.

– Nếu ba đường phân giác trong một tam giác đồng quy tại 1 điểm cụ thể thì điểm này sẽ được gọi là tâm của đường tròn nội tiếp tam giác.

– Nếu hai đường phân giác của tam giác cắt nhau tại một điểm cụ thể thì từ đó ta có thể suy ra đường phân giác thứ 3 cũng sẽ đi qua giao điểm đó. Giao điểm của 3 đường phân giác sẽ cách đều 3 cạnh của tam giác.

– Khi ba đường trung trực trong một tam giác đồng quy tại 1 điểm thì điểm này sẽ được gọi là tâm đường tròn ngoại tiếp tam giác.

– Nếu hai đường trung trực bên trong tam giác cắt nhau tại một điểm thì từ đó chúng ta có thể suy ra đường trung trực thứ 3 chắc chắn đi qua giao điểm đó. Giao điểm của 3 đường trung trực sẽ cách đều 3 đỉnh của tam giác.

3. Cách chứng minh 3 đường thẳng đồng quy

Để chứng minh 3 đường thẳng đồng quy bạn có thể áp dụng những cách làm sau đây:

Cách 1: Tìm giao điểm của hai đường thẳng, sau đó tiến hành chứng minh đường thẳng thứ ba cũng đi qua giao điểm đó.

Cách 2: Chứng minh một điểm bất kỳ cũng thuộc vào ba đường thẳng đó.

Cách 3: Sử dụng 1 trong những tính chất đồng quy trong tam giác như là:

* Ba đường thẳng có chứa các đường trung tuyến.

* Ba đường thẳng có chứa các đường phân giác.

* Ba đường thẳng có chứa các đường trung trực.

* Ba đường thẳng có chứa các đường các đường cao.

Cách 4: Sử dụng tính chất của các đường thẳng định ra trên hai đường thẳng song song và những đoạn thẳng tỉ lệ.

Cách 5: Sử dụng các chứng minh phản chứng.

Cách 6: Sử dụng tính chất thẳng hàng của các điểm

Cách 7: Chứng minh các đường thẳng đều đi qua một điểm duy nhất.

4. Ví dụ chứng minh 3 đường thẳng đồng quy

Tìm m để 3 đường thẳng sau đồng quy tại 1 điểm.

Ta có 3 đường thẳng lần lượt là (d1): y = 2x + 1; (d2): y = (-x) – 2; (d3): y = (m-1)x – 4

Lời giải:

Xét phương trình hoành độ là giao điểm của đường thẳng (d1) và (d2) ta có: y = 2x + 1 = (-x) – 2 ⇔ 3x = -3 ⇔ x = -1

Suy ra ta có y = 2 x (-1) + 1 = -1

Như vậy giao điểm của (d1) với (d2) sẽ là là I(-1;-1)

Để ba đường thẳng trên đồng quy thì điểm I sẽ phải thuộc vào đường thẳng (d3)

=> -1 = (m – 1) x (-1) – 4 ⇔ m = -2

Như vậy phương trình đường thẳng (d3) sẽ là: y = -3x – 4

5. Bài tập chứng minh ba đường thẳng đồng quy

Bài 1. Cho tứ diện ABCD. Gọi G là trọng tâm tam giác BCD; M là trung điểm CD; I thuộc đoạn AG; BI cắt mp (ACD) tại J. Chọn mệnh đề sai

A. Giao tuyến của (ACD) và (ABG) là AMB. 3 điểm A; J; M thẳng hàng.C. J là trung điểm của AM.D. Giao tuyến của mp(ACD) và (BDJ) là DJ.

Bài 2. Cho tứ diện ABCD. Gọi E; F; G là các điểm lần lượt thuộc các cạnh AB; AC; BD sao cho EF cắt BC tại I; EG cắt AD tại H. Ba đường thẳng nào sau đây đồng quy?

A. CD; EF; EG B. CD; IG; HF C. AB; IG; HF D, AC; IG; BD

Bài 3: Cho hình chóp S.ABCD có đáy ABCD không phải là hình thang. Trên cạnh SC lấy điểm M . Gọi N là giao điểm của SD và mp (AMB). Mệnh đề nào sau đây đúng?

A. Ba đường thẳng AB; CD; MN đôi một song songB. Ba đường thẳng AB; CD; MN đôi một cắt nhauC. Ba đường thẳng AB; CD; MN đồng quyD. Ba đường thẳng AB; CD; MN cùng thuộc một mặt phẳng

Bài 4. Cho tam giác ABC và một điểm O ở trong tam giác. Gọi F, G lần lượt là trọng tâm của các tam giác AOB và tam giác AOC. Chứng minh ba đường thẳng AO, BF, CG đồng quy

Bài 5: Cho tam giác nhọn ABC, đường cao AD. Vẽ các điểm M, N sao cho AB, AC theo thứ tự là các đường trung trực của DM, DN. Gọi giao điểm cua MN với AB và AC theo thứ tự là F và E. Chứng minh ba đường thẳng AD, BE, CF đồng quy.

Bài 6: Cho tam giác ABC vuông tại A đường cao AH. Gọi O và K lần lượt là giao điểm của các đường phân giác của tam giác ABH và ACH. Vẽ AD vuông góc với OK. Chứng minh rằng các đường thẳng AD, BO, CK đồng quy.