Hàm trùng phương có 3 cực trị khi nào? Hàm trùng phương là gì?

Hàm số trùng phương là một trong những dạng hàm số quan trọng. Vậy hàm trùng phương là gì? Thế nào là hàm trùng phương có 3 cực trị? Khảo sát hàm trùng phương ? Công thức cực trị của hàm trùng phương?… Trong bài viết dưới đây, DINHNGHIA.VN sẽ giúp bạn tổng hợp kiến thức về chủ đề trên, cùng tìm hiểu nhé!

Hàm trùng phương là gì?

Hàm số trùng phương là hàm số bậc 4 có dạng

( y=f(x) = ax^4+bx^2+c )

Như vậy có thể coi đây là một hàm số bậc 2 với ẩn là ( x^2 )

Khảo sát hàm trùng phương

Các bước khảo sát hàm số trùng phương ( y=f(x) = ax^4+bx^2+c ) như sau:

  • Tập xác định (D=mathbb{R})
  • Xét chiều biến thiên

Đạo hàm ( y’= 4ax^3+2bx )

(y’=0 Leftrightarrow 2x(2ax^2+b)=0)

(Leftrightarrow left[begin{array}{l}x=0\x=pm sqrt{-frac{b}{2a}}end{array}right.)

  • Tìm cực trị:

Hàm số có ( 1 ) điểm cực trị tại (x=0 Leftrightarrow ab geq 0)

Hàm số có ( 3 ) điểm cực trị tại (x=0;x=pm sqrt{-frac{b}{2a}}Leftrightarrow ab <0)

  • Tìm các giới hạn vô cực:

(lim_{xrightarrow -infty}f(x)= lim_{xrightarrow +infty}f(x)=+infty Leftrightarrow a>0)

(lim_{xrightarrow -infty}f(x)= lim_{xrightarrow +infty}f(x)=-infty Leftrightarrow a<0)

  • Lập bảng biến thiên:

Gồm có 3 dòng ( x; y’ ; y )

  • Đồ thị hàm trùng phương

đồ thị hàm số hàm trùng phương có 3 cực trị

Ví dụ:

Khảo sát hàm số ( y= x^4-4x^2 +5 )

Cách giải:

Tập xác định (D=mathbb{R})

Giới hạn vô cực

(lim_{xrightarrow -infty}y=+infty)

(lim_{xrightarrow +infty}y=+infty)

Đạo hàm:

(y’=4x^3-8x=4x(x^2-2))

(y’=0Leftrightarrow left[begin{array}{l}x=0\x=pm sqrt{2}end{array}right.)

Ta có bảng biến thiên:

bảng biến thiên hàm trùng phương có 3 cực trị

Hàm số đồng biến trên ((-sqrt{2};0)) và ((sqrt{2};+infty))

Hàm số nghịch biến trên ((-infty;-sqrt{2})) và ((0;sqrt{2}))

Hàm số có một cực đại tại ((0;5)) và hai điểm cực tiểu tại ((-sqrt{2};1);(sqrt{2};1))

Đồ thị hàm số:

lý thuyết và bài tập hàm trùng phương có 3 cực trị

Nghiệm của hàm trùng phương

Cho hàm số trùng phương ( y= ax^4+bx^2+c )

  • Điều kiện hàm trùng phương có 4 nghiệm

(left{begin{matrix} ab <0\ac>0 \b^2-4ac >0 end{matrix}right.)

  • Điều kiện hàm trùng phương có 2 nghiệm

(left{begin{matrix} ac<0 \b^2-4ac geq 0 end{matrix}right.)

  • Điều kiện hàm trùng phương vô nghiệm

(left[begin{array}{l}b^2-4ac <0 \ left{begin{matrix} b^2-4ac geq 0 \ ab >0 \ ac >0 end{matrix}right.end{array}right.)

Ví dụ:

Tìm số nghiệm của từng hàm số sau đây

a, ( y= x^4-5x^2+4 )

b, ( y= x^4 -x^2 -6 )

c , ( x^4 +3x^2 + 2 )

Cách giải:

a, Ta có

(left{begin{matrix} a=1\b=-5 \ c=4 end{matrix}right.Rightarrow left{begin{matrix} ab <0 \ac >0 \b^2-4ac = 9 >0 end{matrix}right.)

(Rightarrow) phương trình có ( 4 ) nghiệm

b, Ta có

(left{begin{matrix} a=1\b=-1 \ c=-6 end{matrix}right.Rightarrow left{begin{matrix} ac <0 \b^2-4ac = 25 >0 end{matrix}right.)

(Rightarrow) phương trình có ( 2 ) nghiệm

c, Ta có

(left{begin{matrix} a=1\b=3 \ c=2 end{matrix}right.Rightarrow left{begin{matrix} ab>0 \ ac >0 \b^2-4ac = 1 >0 end{matrix}right.)

(Rightarrow) phương trình vô nghiệm

Cực trị của hàm trùng phương

Hàm trùng phương có 3 cực trị khi nào?

Điều kiện hàm trùng phương có 3 cực trị:

Hàm số ( y= ax^4+bx^2+c ) có 3 cực trị (Leftrightarrow ab <0)

Khi đó:

Hàm số có 2 cực tiểu và 1 cực đại (Leftrightarrow left{begin{matrix} a>0\ b<0 end{matrix}right.)

Hàm số có 2 cực đại và 1 cực tiểu (Leftrightarrow left{begin{matrix} a<0\ b>0 end{matrix}right.)

Hàm trùng phương có 1 cực trị khi nào?

Điều kiện hàm trùng phương có 1 cực trị:

Hàm số ( y= ax^4+bx^2+c ) có 1 cực trị (Leftrightarrow ab geq 0)

Khi đó:

Hàm số có đúng 1 cực trị là cực tiểu ( Leftrightarrow left{begin{matrix} a>0\ bgeq 0 end{matrix}right.)

Hàm số có đúng 1 cực trị là cực đại ( Leftrightarrow left{begin{matrix} a<0\ bleq 0 end{matrix}right. )

Ví dụ:

Tìm m để hàm trùng phương không có cực đại

( mx^4 +2(m^2-4)m^2+m^2+1 )

Cách giải:

Để hàm số trùng phương không có cực đại thì hàm số chỉ có đúng một cực trị là cực tiểu

(Rightarrow left{begin{matrix} m>0 \ m^2-4 geq 0 end{matrix}right.)

(Leftrightarrow left{begin{matrix} m>0 \ left[begin{array}{l}mgeq 2\ m leq -2end{array}right. end{matrix}right.)

(Leftrightarrow m geq 2)

Bài viết trên đây của DINHNGHIA.VN đã giúp bạn tổng hợp lý thuyết và bài tập về chuyên đề hàm số trùng phương cũng như các phương pháp giải. Hy vọng những kiến thức trong bài viết sẽ giúp ích cho bạn trong quá trình học tập và nghiên cứu về chủ đề hàm trùng phương có 3 cực trị. Chúc bạn luôn học tốt!

Xem thêm >>> Cực trị của hàm số là gì?

Xem thêm >>> Công thức, Điều kiện và Bài tập cực trị của hàm số bậc 4

Related Posts

Cách dùng dưỡng môi Laneige – Bí quyết sở hữu đôi môi căng mọng

Học cách dùng dưỡng môi Laneige đúng cách để sở hữu đôi môi căng mọng và đầy sức sống. Bí quyết chăm sóc môi hiệu quả chỉ với thương hiệu hàng đầu Laneige.

Oppo A1K cũ cho tốt: Tìm hiểu về sản phẩm

Oppo A1K là một trong những dòng điện thoại thông minh được yêu thích tại Việt Nam. Nếu bạn đang muốn sở hữu một chiếc Oppo A1K…

Cách dụng thanh lăn mụn đầu đen Mamonde: Giải pháp hiệu quả cho vấn đề da mặt

Cách dụng thanh lăn mụn đầu đen Mamonde: Giải pháp hiệu quả cho vấn đề da mặt. Khám phá sản phẩm chăm sóc da tự nhiên được ưa chuộng nhất hiện nay!

Tìm hiểu về tai nghe Kanen: Lịch sử phát triển và sản phẩm nổi bật

Tai nghe là một trong những thiết bị không thể thiếu đối với cuộc sống hiện đạVới sự phát triển của công nghệ, các thương hiệu tai…

Cách dạy con bướng bỉnh: Tại sao trẻ em lại trở nên bướng bỉnh?

Cách dạy con bướng bỉnh hiệu quả và đơn giản nhất. Tìm hiểu ngay cách giúp trẻ thích hợp thể hiện cảm xúc để phát triển tốt nhất.

Hột vịt lộn bao nhiêu tiền – Giá cả và thông tin chi tiết

Bạn đang tìm kiếm thông tin về giá cả và cách chế biến hột vịt lộn? Đừng bỏ lỡ bài viết này để khám phá thêm nhiều thông tin hữu ích về món ăn đặc sản này, từ các công thức nấu ăn cho đến lưu ý để tránh nguy cơ bệnh tật khi ăn. Hãy cùng tìm hiểu “Hột vịt lộn bao nhiêu tiền – Giá cả và thông tin chi tiết”.