Làm quen với số nguyên âm và cách so sánh hai số nguyên âm

1. Làm quen với số nguyên âm

1.1. Số nguyên âm là gì ?

Trong toán học, số âm là một số thực nhỏ hơn 0. Theo khái niệm thì số tự nhiên với dấu trừ đứng trước sẽ được gọi là số nguyên âm.

1.2. Ký hiệu của số nguyên âm

Trong bài học làm quen với số nguyên âm, các em học sinh cần biết được ký hiệu của số nguyên âm. Theo nguyên tắc, các số âm đều được thể hiện bằng cách thông thường là đặt trước số dương tương ứng một dấu “-” (trừ).

Ví dụ: -1, -4, -7, -9.

» Xem thêm: Số nguyên dương là gì? Khái niệm và ứng dụng

2. Trục số của số nguyên âm

2.1. Trục số là gì?

Trục số là một đường thẳng mà trên mỗi điểm của đường thẳng sẽ được hiển thị với một số nguyên tương ứng. Trong đó thì số 0 là điểm nằm giữa của số nguyên âm và số nguyên dương.

Trục số hiển thị các số nguyên tương ứng

Trong đường thẳng của trục số thì số nguyên âm thường được biểu diễn bên trái, và nằm bên trái của số 0.

2.2. Khái niệm số đối là gì?

Số đối theo định nghĩa chính là số có giá trị bằng với giá trị của một số khác nhưng sẽ trái dấu với dấu của số đó. Ngoài ra thì tổng của hai số đối sẽ bằng không. Khoảng cách giữa hai số đối so với số 0 là bằng nhau trên trục số.

Ví dụ: Tìm số đối của 3, 5, -9, 27.

Cách giải:

Số đối của số 3 là -3.

Số đối của 5 là -5.

Số đối của -9 là 9.

Số đối của 27 là -27.

2.3. Giá trị tuyệt đối là gì?

Giá trị tuyệt đối theo định nghĩa toán học dùng để chỉ giá trị của một số mà không tính đến dấu của chúng. Ví dụ: |6| = 6, |-6| = 6.

Chúng ta có thể nói giá trị tuyệt đối của một số dương là chính số đó, và trị tuyệt đối của một số âm là số đó nhưng không có dấu trừ.

3. Số nguyên âm nhỏ nhất và lớn nhất

3.1. Số nguyên âm lớn nhất

Ngược lại với phép so sánh của số nguyên dương thì số nguyên âm nào có giá trị tuyệt đối là nhỏ nhất và gần số 0 trên trục số nhất thì số đó sẽ là số nguyên âm lớn nhất.

Ví dụ: Tìm số nguyên âm lớn nhất có: 1 chữ số, 2 chữ số và 3 chữ số.

Cách giải:

Số nguyên âm lớn nhất có 1 chữ số là: -3.

Số nguyên âm lớn nhất có 2 chữ số là: -22.

Số nguyên âm lớn nhất có 3 chữ số là: -200.

3.2. Số nguyên âm nhỏ nhất

Số nguyên âm nhỏ nhất là số có giá trị tuyệt đối lớn nhất và xa số 0 trên trục số nhất.

Ví dụ: Tìm số nguyên âm nhỏ nhất có: 1 chữ số, 2 chữ số, 3 chữ số.

Cách giải:

Số nguyên âm nhỏ nhất có 1 chữ số là: -9.

Số nguyên âm nhỏ nhất có 2 chữ số là: -99.

Số nguyên âm nhỏ nhất có 3 chữ số là: -999.

Cách so sánh hai số nguyên âm

Cách 1: Sử dụng định nghĩa số nguyên âm để biểu diễn số nguyên cần so sánh trên trục số. Giá trị các số nguyên cũng sẽ tăng dần từ trái sang phải.

Cách 2: Căn cứ vào các nhận xét sau:

  • Số nguyên âm nhỏ hơn 0.
  • Số nguyên dương lớn hơn số nguyên âm.
  • Trong hai số nguyên âm, số nào có giá trị tuyệt đối nhỏ hơn thì số đó lớn hơn.

Ví dụ: So sánh các số sau: 4 và -3, -4 và -8, -136 và -135.

Cách giải:

4 > -3.

-4 > -8.

-136 < -135.

4. Tìm hiểu phép cộng hai số nguyên âm

Cơ sở phép cộng hai số nguyên âm thì ta cộng hai giá trị tuyệt đối của chúng, sau đó đặt dấu “-” trước kết quả.

Ví dụ:

-24 + (-15) = -(|−24| + |−15|) = -(24 + 15) = -39

» Xem thêm: Quy tắc cộng hai số nguyên cùng dấu và các dạng toán thường gặp

5. Bài tập vận dụng

Câu 1: Người ta còn dùng số nguyên âm để chỉ thời gian trước Công nguyên. Chẳng hạn nhà toán học Pi-ta-go sinh năm -570 nghĩa là ông sinh năm 570 trước Công nguyên.

Hãy viết số (nguyên âm) chỉ năm tổ chức Thế vận hội đầu tiên biết rằng nó diễn ra năm 776 trước Công nguyên.

Lời giải:

Thế vận hội đầu tiên diễn ra năm 776 trước Công nguyên.

Vậy có nghĩa nó được tổ chức năm -776.

Câu 2: Đọc độ cao của các điểm sau:

a) Độ cao của đỉnh núi Ê-vơ-rét (thuộc Nê-pan) là 8848 mét (cao nhất thế giới).

b) Độ cao của đáy vực Ma-ri-an (thuộc vùng biển Phi-lip-pin là -11524 mét (sâu nhất thế giới).

Lời giải:

a) Độ cao của đỉnh núi Ê-vơ-rét là tám nghìn tám trăm bốn mươi tám mét.

b) Độ cao của đáy vực Ma-ri-an là âm mười một nghìn năm trăm hai mươi tư mét (Nói cách khác : Vực Ma-ri-an sâu 11524m so với mực nước biển).

Câu 3: Các điểm A, B, C, D ở trục số trên hình 33 biểu diễn những số nào?

Lời giải:

Điểm A biểu diễn số – 6

Điểm B biểu diễn số – 2

Điểm C biểu diễn số 1

Điểm D biểu diễn số 5

Hy vọng bài viết sẽ giúp ích cho các em học sinh có thể làm quen với số nguyên âm và biết cách so sánh hai số nguyên âm cũng như các dạng bài tập để ứng dụng vào bài tập thực tế.