Phương trình tiếp tuyến của đồ thị hàm số có rất nhiều dạng bài như: viết pttt của hàm số tại 1 điểm, đi qua 1 điểm, biết hệ số góc…Nhưng phần này lại không khó khăn gì nếu chúng ta nắm được phương pháp của từng dạng bài này.
I.Lý thuyết: Bài toán về tiếp tuyến với đường cong:
Cách 1: Dùng tọa độ tiếp điểm
Phương trình tiếp tuyến có dạng: y = f’(x0). (x – x0) + y0
1.Lập phương trình tiếp tuyến với đường cong tại điểm M(x0, y0) thuộc đồ thị hàm số (tức là tiếp tuyến duy nhất nhận M(x0; y0) làm tiếp điểm).
Phương trình tiếp tuyến với hàm số (C): y = f(x) tại điểm M(x0; y0) ∈ (C)
(hoặc tại h x = x0 ) có dạng: y =f’(x0).(x – x0) + y0.
2.Lập phương trình tiếp tuyến d với đường cong đi qua điểm A (xA, yA) cho trước, kể cả điểm thuộc đồ thị hàm số (tức là mọi tiếp tuyến đi qua A(xA, yA)).
Cho hàm số (C): y = f(x). Giả sử tiếp điểm là M(x0, y0), khi đó phương trình tiếp tuyến có dạng: y = f’(x).(x – x0) + y0 (d).
Điểm A(xA, yA) ∈ d, ta được: yA = f’(x0). (xA – x0) + y0 => x0
Từ đó lập được phương trình tiếp tuyến d.
3. Lập phương tiếp tuyến d với đường cong biết hệ số góc k
Cho hàm số (C): y = f(x). Giả sử tiếp điểm là M(x0;y0), khi đó phương trình tiếp tuyến có dạng: d: y = f’(x0).(x – x0) + y0.
Hoành độ tiếp điểm của tiếp tuyến d là nghiệm của phương trình:
f’(x0) = k => x0, thay vào hàm số ta được y0 = f(x0).
Ta lập được phương trình tiếp tuyến d: y = f’(x0). (x – x0) + y0.
Cách 2: Dùng điều kiện tiếp xúc
Phương trình đường thẳng đi qua một điểm M(x0; y0) có hệ số góc k có dạng;
d:y = g’(x) = k.(x – x0) + y0.
Điều kiện để đường thằng y = g(x) tiếp xúc với đồ thị hàm số y = f(x) là hệ phương trình sau có nghiệm: (left{begin{matrix} f(x)=g(x) & \ f'(x)=g'(x) & end{matrix}right.) Từ đó lập được phương trình tiếp tuyến d.
II. Bài tập
Loại 1: Cho hàm số y =f(x). Viết phương trình tiếp tuyến tại điểm M0(x0; y0) ∈ (C).
Giải
Phương trình tiếp tuyến tại M0 có dạng: y = k(x – x0) + y0 (*)
Với x0 là hoành độ tiếp điểm;
Với y0 = f(x0) là tung độ tiếp điểm;
Với k = y’(x0) = f’(x0) là hệ số góc của tiếp tuyến.
Để viết được phương trình tiếp tuyến ta phải xác định được x0; y0 và k.
MỘT SỐ DẠNG CƠ BẢN
Dạng 1: Viết phương trình tiếp tuyến tại M0(x0;y0) ∈ (C)
-Tính đạo hàm của hàm số, thay x0 ta được hệ số góc
Áp dụng (*) ta được phương trình tiếp tuyến cần tìm.
Dạng 2: Cho trước hoành độ tiếp điểm x0
-Tính đạo hàm của hàm số, thay x0 ta được hệ số góc.
– Thay x0 vào hàm số ta tìm được tung độ tiếp điểm.
Áp dụng (*) ta được phương trình tiếp tuyến cần tìm.
Dạng 3: Cho trước tung độ tiếp điểm y0
-Giải phương trình y0 = f(x0) để tìm x0.
-Tính đạo hàm của hàm số, thay x0 ta được hệ số góc.
Áp dụng (*) ta được phương trình tiếp tuyến cần tìm.
Chú ý: Có bao nhiêu giá trị của x0 thì có bấy nhiêu tiếp tuyến.
Dạng 4: Cho trước hệ số góc của tiếp tuyến k = y’(x0) = f’(x0)
-Tính đạo hàm và giải phương trình k = y’(x0) = f’(x0) để tìm x0
– Thay x0 vào hàm số ta tìm được tung độ tiếp điểm cần tìm.
Chú ý: Có bao nhiêu giá trị của x0 thì có bấy nhiêu tiếp tuyến.
Chú ý: Một số dạng khác
-Khi giả thiết yêu cầu viết phương trình tiếp tuyến biết tiếp tuyến vuông góc với đường thẳng : y = ax + b thì điều này
<=> y’(x0). a = -1 ⇔ y’(x0) = -1/a
… Quay về dạng 4.
– Khi giả thiết yêu cầu viết phương trình tiếp tuyến biết tiếp tuyến song song với đường thẳng
y = ax + b thì điều này ⇔ y’(x0) = a… Quay về dạng 4.
– Khi giả thiết yêu cầu viết phương trình tiếp tuyến tại giao điểm với đường thẳng y = ax + b thì việc đầu tiên là tìm tọa độ giao điểm của (C) và đường thẳng… Quay về dạng 1.
Chú ý:
Cho hai đường thẳng d1: y = a1x + b1 với a1 là hệ số góc của đường thẳng d1 và y = a2x + b2 với a2 là hệ số góc của đường thẳng d2.
Tất cả nội dung bài viết. Các em hãy xem thêm và tải file chi tiết dưới đây:
Tải về
Luyện Bài tập trắc nghiệm môn Toán lớp 12 – Xem ngay
Tôi là Nguyễn Văn Sỹ có 15 năm kinh nghiệm trong lĩnh vực thiết kế, thi công đồ nội thất; với niềm đam mê và yêu nghề tôi đã tạo ra những thiết kếtuyệt vời trong phòng khách, phòng bếp, phòng ngủ, sân vườn… Ngoài ra với khả năng nghiên cứu, tìm tòi học hỏi các kiến thức đời sống xã hội và sự kiện, tôi đã đưa ra những kiến thức bổ ích tại website nhaxinhplaza.vn. Hy vọng những kiến thức mà tôi chia sẻ này sẽ giúp ích cho bạn!