Tổng hợp dạng toán về phương trình bậc 2 một ẩn thông dụng nhất

Phương trình bậc 2 một ẩn là một trong những kiến thức quan trọng trong chương trình toán trung học cơ sở. Vì vậy, hôm nay Kiến Guru xin giới thiệu đến bạn đọc bài viết về chủ đề này. Bài viết sẽ tổng hợp các lý thuyết căn bản, đồng thời cũng đưa ra những dạng toán thường gặp và các ví dụ áp dụng một cách chi tiết, rõ ràng. Đây là chủ đề ưa chuộng, hay xuất hiện ở các đề thi tuyển sinh. Cùng Kiến Guru khám phá nhé:

phuong-trinh-bac-2-mot-an-00

Phương trình bậc 2 một ẩn – Lý thuyết.

Phương trình bậc 2 một ẩn là gì?

Cho phương trình sau: ax2+bx+c=0 (a≠0), được gọi là phương trình bậc 2 với ẩn là x.

Công thức nghiệm: Ta gọi Δ=b2-4ac.Khi đó:

  • Δ>0: phương trình tồn tại 2 nghiệm:.

phuong-trinh-bac-2-mot-an-01

  • Δ=0, phương trình có nghiệm kép x=-b/2a
  • Δ<0, phương trình đã cho vô nghiệm.

Trong trường hợp b=2b’, để đơn giản ta có thể tính Δ’=b’2-ac, tương tự như trên:

  • Δ’>0: phương trình có 2 nghiệm phân biệt.

phuong-trinh-bac-2-mot-an-02

  • Δ’=0: phương trình có nghiệm kép x=-b’/a
  • Δ’<0: phương trình vô nghiệm.

Định lý Viet và ứng dụng trong phương trình bậc 2 một ẩn.

Cho phương trình bậc 2 một ẩn: ax2+bx+c=0 (a≠0). Giả sử phương trình có 2 nghiệm x1 và x2, lúc này hệ thức sau được thỏa mãn:

Tổng hợp dạng toán về phương trình bậc 2 một ẩn thông dụng nhất.

Dựa vào hệ thức vừa nêu, ta có thể sử dụng định lý Viet để tính các biểu thức đối xứng chứa x1 và x2

  • x1+x2=-b/a
  • x12+x22=(x1+x2)2-2x1x2=(b2-2ac)/a2
  • Tổng hợp dạng toán về phương trình bậc 2 một ẩn thông dụng nhất.

Nhận xét: Đối với dạng này, ta cần biến đổi biểu thức làm sao cho xuất hiện (x1+x2) và x1x2 để áp dụng hệ thức Viet.

Định lý Viet đảo: Giả sử tồn tại hai số thực x1 và x2 thỏa mãn: x1+x2=S, x1x2=P thì x1 và x2 là 2 nghiệm của phương trình x2-Sx+P=0

Một số ứng dụng thường gặp của định lý Viet trong giải bài tập toán:

  • Nhẩm nghiệm phương trình bậc 2: cho phương trình ax2+bx+c=0 (a≠0),
    • Nếu a+b+c=0 thì phương trình có nghiệm x1=1 và x2=c/a
    • Nếu a-b+c=0 thì phương trình có nghiệm x1=-1 và x2=-c/a
  • Phân tích đa thức thành nhân tử: cho đa thức P(x)=ax2+bx+c nếu x1 và x2 là nghiệm của phương trình P(x)=0 thì đa thức P(x)=a(x-x1)(x-x2)
  • Xác định dấu của các nghiệm: cho phương trình ax2+bx+c=0 (a≠0), giả sử x1 và x2 là 2 nghiệm của phương trình. Theo định lý Viet, ta có:

Tổng hợp dạng toán về phương trình bậc 2 một ẩn thông dụng nhất.

  • Nếu S<0, x1 và x2 trái dấu.
  • Nếu S>0, x1 và x2 cùng dấu:
    • P>0, hai nghiệm cùng dương.
    • P<0, hai nghiệm cùng âm.

II. Dạng bài tập về phương trình bậc 2 một ẩn:

Dạng 1: Bài tập phương trình bậc 2 một ẩn không xuất hiện tham số.

Để giải các phương trình bậc 2, cách phổ biến nhất là sử dụng công thức tính Δ hoặc Δ’, rồi áp dụng các điều kiện và công thức của nghiệm đã được nêu ở mục I.

Ví dụ 1: Giải các phương trình sau:

  1. x2-3x+2=0
  2. x2+x-6=0

Hướng dẫn:

  1. Δ=(-3)2-4.2=1. Vậy

Tổng hợp dạng toán về phương trình bậc 2 một ẩn thông dụng nhất.

Ngoài ra, ta có thể áp dụng cách tính nhanh: để ý Tổng hợp dạng toán về phương trình bậc 2 một ẩn thông dụng nhất.

suy ra phương trình có nghiệm là x1=1 và x2=2/1=2

  1. Δ=12-4.(-6)=25. Vậy

Tuy nhiên, ngoài các phương trình bậc 2 đầy đủ, ta cũng xét những trường hợp đặc biệt sau:

Phương trình khuyết hạng tử.

Khuyết hạng tử bậc nhất: ax2+c=0 (1).

Phương pháp:

  • Tổng hợp dạng toán về phương trình bậc 2 một ẩn thông dụng nhất.
  • Nếu -c/a>0, nghiệm là:

Tổng hợp dạng toán về phương trình bậc 2 một ẩn thông dụng nhất.

  • Nếu -c/a=0, nghiệm x=0
  • Nếu -c/a<0, phương trình vô nghiệm.

Khuyết hạng tử tự do: ax2+bx=0 (2). Phương pháp:

  • Tổng hợp dạng toán về phương trình bậc 2 một ẩn thông dụng nhất.

Ví dụ 2: Giải phương trình:

  1. x2-4=0
  2. x2-3x=0

Hướng dẫn:

  1. x2-4=0 ⇔ x2=4 ⇔ x=2 hoặc x=-2
  2. x2-3x=0 ⇔ x(x-3)=0 ⇔ x=0 hoặc x=3

Phương trình đưa về dạng bậc 2.

Phương trình trùng phương: ax4+bx2+c=0 (a≠0):

  • Đặt t=x2 (t≥0).
  • Phương trình đã cho về dạng: at2+bt+c=0
  • Giải như phương trình bậc 2 bình thường, chú ý điều kiện t≥0

Phương trình chứa ẩn ở mẫu:

  • Tìm điều kiện xác định của phương trình (điều kiện để mẫu số khác 0).
  • Quy đồng khử mẫu.
  • Giải phương trình vừa nhận được, chú ý so sánh với điều kiện ban đầu.

Chú ý: phương pháp đặt t=x2 (t≥0) được gọi là phương pháp đặt ẩn phụ. Ngoài đặt ẩn phụ như trên, đối với một số bài toán, cần khéo léo lựa chọn sao cho ẩn phụ là tốt nhất nhằm đưa bài toán từ bậc cao về dạng bậc 2 quen thuộc. Ví dụ, có thể đặt t=x+1, t=x2+x, t=x2-1…

Ví dụ 3: Giải các phương trình sau:

  1. 4×4-3×2-1=0
  2. Tổng hợp dạng toán về phương trình bậc 2 một ẩn thông dụng nhất.

Hướng dẫn:

  1. Đặt t=x2 (t≥0), lúc này phương trình trở thành:

4t2-3t-1=0, suy ra t=1 hoặc t=-¼

  • t=1 ⇔ x2=1 ⇔ x=1 hoặc x=-1.
  • t=-¼ , loại do điều kiện t≥0

Vậy phương trình có nghiệm x=1 hoặc x=-1.

  1. Ta có:

Tổng hợp dạng toán về phương trình bậc 2 một ẩn thông dụng nhất.

Dạng 2: Phương trình bậc 2 một ẩn có tham số.

Biện luận số nghiệm của phương trình bậc 2.

Phương pháp: Sử dụng công thức tính Δ, dựa vào dấu của Δ để biện luận phương trình có 2 nghiệm phân biệt, có nghiệm kép hay là vô nghiệm.

Ví dụ 4: Giải và biện luận theo tham số m: mx2-5x-m-5=0 (*)

Hướng dẫn:

Xét m=0, khi đó (*) ⇔ -5x-5=0 ⇔ x=-1

Xét m≠0, khi đó (*) là phương trình bậc 2 theo ẩn x.

  • Tổng hợp dạng toán về phương trình bậc 2 một ẩn thông dụng nhất.
  • Vì Δ≥0 nên phương trình luôn có nghiệm:
    • Δ=0 ⇔ m=-5/2, phương trình có nghiệm duy nhất.
    • Δ>0 ⇔ m≠-5/2, phương trình có 2 nghiệm phân biệt:

Tổng hợp dạng toán về phương trình bậc 2 một ẩn thông dụng nhất.

Xác định điều kiện tham số để nghiệm thỏa yêu cầu đề bài.

Phương pháp: để nghiệm thỏa yêu cầu đề bài, trước tiên phương trình bậc 2 phải có nghiệm. Vì vậy, ta thực hiện theo các bước sau:

  • Tính Δ, tìm điều kiện để Δ không âm.
  • Dựa vào định lý Viet, ta có được các hệ thức giữa tích và tổng, từ đó biện luận theo yêu cầu đề.

Ví dụ 5: Cho phương trình x2+mx+m+3=0 (*). Tìm m để phương trình (*) có 2 nghiệm thỏa mãn:

Tổng hợp dạng toán về phương trình bậc 2 một ẩn thông dụng nhất.

Hướng dẫn:

Để phương trình (*) có nghiệm thì:

Khi đó, gọi x1 và x2 là 2 nghiệm, theo định lý Viet:

Tổng hợp dạng toán về phương trình bậc 2 một ẩn thông dụng nhất.

Mặt khác:

Tổng hợp dạng toán về phương trình bậc 2 một ẩn thông dụng nhất.

Theo đề:

Tổng hợp dạng toán về phương trình bậc 2 một ẩn thông dụng nhất.

Thử lại:

  • Khi m=5, Δ=-7 <0 (loại)
  • Khi m=-3, Δ=9 >0 (nhận)

vậy m = -3 thỏa yêu cầu đề bài.

Trên đây là tổng hợp của Kiến Guru về phương trình bậc 2 một ẩn. Hy vọng qua bài viết, các bạn sẽ hiểu rõ hơn về chủ đề này. Ngoài việc tự củng cố kiến thức cho bản thân, các bạn cũng sẽ rèn luyện thêm được tư duy giải quyết các bài toán về phương trình bậc 2. Các bạn cũng có thể tham khảo thêm các bài viết khác trên trang của Kiến Guru để khám phá thêm nhiều kiến thức mới. Chúc các bạn sức khỏe và học tập tốt!