Các phương pháp tính định thức của ma trận | Học toán online chất lượng cao 2022 | Vted

>>Xem thêm Các phương pháp tính định thức của ma trận

>> Độc lập tuyến tính và phụ thuộc tuyến tính

>>Định thức của ma trận và các tính chất của định thức

>> Chứng minh một ma trận suy biến và ma trận khả nghịch

>>Cơ sở của không gian véctơ

1. Phần bù đại số

Cho ma trận $A={{({{a}_{ij}})}_{ntimes n}}$ khi đó ${{A}_{ij}}={{(-1)}^{i+j}}{{M}_{ij}},$ với ${{M}_{ij}}$ là định thức nhận được từ định thức của ma trận $A$ bằng cách bỏ đi dòng $i$ và cột $j$ được gọi là phần bù đại số của phần tử ${{a}_{ij}}.$

Ví dụ 1:Cho ma trận $A = left( {begin{array}{*{20}{c}} 1&2&{ – 1}&m\ 3&1&4&2\ { – 3}&4&2&1\ { – 1}&2&1&3 end{array}} right).$

Tính các phần bù đại số ${{A}_{11}},{{A}_{12}},{{A}_{13}},{{A}_{14}}.$

Giải. Ta có:

$begin{array}{l} {A_{11}} = {( – 1)^{1 + 1}}left| {begin{array}{*{20}{c}} 1&4&2\ 4&2&1\ 2&1&3 end{array}} right| = – 35;{A_{12}} = {( – 1)^{1 + 2}}left| {begin{array}{*{20}{c}} 3&4&2\ { – 3}&2&1\ { – 1}&1&3 end{array}} right| = – 45;\ {A_{13}} = {( – 1)^{1 + 3}}left| {begin{array}{*{20}{c}} 3&1&2\ { – 3}&4&1\ { – 1}&2&3 end{array}} right| = 34;{A_{14}} = {( – 1)^{1 + 4}}left| {begin{array}{*{20}{c}} 3&1&4\ { – 3}&4&2\ { – 1}&2&1 end{array}} right| = 7. end{array}$

Công thức khai triển Laplace

Cho ma trận $A={{({{a}_{ij}})}_{ntimes n}}$ khi đó

$det (A)={{a}_{i1}}{{A}_{i1}}+{{a}_{i2}}{{A}_{i2}}+…+{{a}_{in}}{{A}_{in}}text{ }(i=1,2,…,n)$

đây là công thức khai triển định thức ma trận $A$ theo dòng thứ $i.$

$det (A)={{a}_{1j}}{{A}_{1j}}+{{a}_{2j}}{{A}_{2j}}+…+{{a}_{nj}}{{A}_{nj}}text{ }(j=1,2,…,n)$

đây là công thức khai triển định thức ma trận $A$ theo cộng thứ $j.$

Ví dụ 1: Tính định thức của ma trận $A = left( {begin{array}{*{20}{c}} 1&2&{ – 1}&m\ 3&1&4&2\ { – 3}&4&2&1\ { – 1}&2&1&3 end{array}} right)$ theo công thức khai triển dòng 1.

Giải. Có $det (A)=1.{{A}_{11}}+2.{{A}_{12}}-1.{{A}_{13}}+m.{{A}_{14}},$ trong đó

$begin{array}{l} {A_{11}} = {( – 1)^{1 + 1}}left| {begin{array}{*{20}{c}} 1&4&2\ 4&2&1\ 2&1&3 end{array}} right| = – 35;{A_{12}} = {( – 1)^{1 + 2}}left| {begin{array}{*{20}{c}} 3&4&2\ { – 3}&2&1\ { – 1}&1&3 end{array}} right| = – 45;\ {A_{13}} = {( – 1)^{1 + 3}}left| {begin{array}{*{20}{c}} 3&1&2\ { – 3}&4&1\ { – 1}&2&3 end{array}} right| = 34;{A_{14}} = {( – 1)^{1 + 4}}left| {begin{array}{*{20}{c}} 3&1&4\ { – 3}&4&2\ { – 1}&2&1 end{array}} right| = 7. end{array}$

Vậy $det (A)=-35+2.(-45)-34+7m=7m-159.$

Ví dụ 2: Tính định thức $left| {begin{array}{*{20}{c}} 1&1&2&2\ { – 3}&1&5&1\ { – 2}&5&0&0\ 2&{ – 1}&3&{ – 1} end{array}} right|.$

Giải. Để ý dòng 3 của định thức có 2 phần tử bằng 0 nên khai triển theo dòng này sẽ chỉ có hai số hạng

Có [left| {begin{array}{*{20}{c}} 1&1&2&2\ { – 3}&1&5&1\ { – 2}&5&0&0\ 2&{ – 1}&3&{ – 1} end{array}} right| = – 2{A_{31}} + 5{A_{32}} = – 2left| {begin{array}{*{20}{c}} 1&2&2\ 1&5&1\ { – 1}&3&{ – 1} end{array}} right| + 5left| {begin{array}{*{20}{c}} 1&2&2\ { – 3}&5&1\ 2&3&{ – 1} end{array}} right| = – 2.8 + 5.( – 48) = 224.]

Ví dụ 3: Tính định thức $left| {begin{array}{*{20}{c}} 0&1&2&{ – m}\ { – 2}&{ – 1}&2&1\ 0&{ – 3}&4&2\ 0&{ – 5}&1&1 end{array}} right|.$

Giải. Để ý cột 1 có 3 phần tử bằng 0 nên khai triển theo cột 1 ta có

[left| {begin{array}{*{20}{c}} 0&1&2&{ – m}\ { – 2}&{ – 1}&2&1\ 0&{ – 3}&4&2\ 0&{ – 5}&1&1 end{array}} right| = 0.{A_{11}} – 2{A_{21}} + 0{A_{31}} + 0{A_{41}} = – 2{A_{21}} = – 2{( – 1)^{2 + 1}}left| {begin{array}{*{20}{c}} 1&2&{ – m}\ { – 3}&4&2\ { – 5}&1&1 end{array}} right| = – 34m – 24.]

Ví dụ 4: Tính định thức [left| {begin{array}{*{20}{c}} { – 3}&4&1&2\ { – m}&1&{ – 3}&1\ 2&{ – 3}&1&4\ { – 1}&2&1&3 end{array}} right|.]

Giải. Để ý cột 3 có phần tử đầu tiên là 1, vậy ta sẽ biến đổi sơ cấp cho định thức theo cột 3

Ví dụ 5: Tính định thức $left| {begin{array}{*{20}{c}} 1&2&{ – 3}&4\ { – 1}&3&1&{ – m}\ 2&{ – 4}&3&1\ { – 3}&2&1&2 end{array}} right|.$

Giải.

Ví dụ 6: Cho ma trận $A = left( {begin{array}{*{20}{c}} 1&2&{ – 3}&4\ { – 1}&3&1&{ – m}\ { – 2}&{ – 2}&{ – 2}&{ – 2}\ { – 3}&2&1&2 end{array}} right).$ Tính tổng các phần bù đại số của các phần tử thuộc dòng 4 của ma trận $A.$

Giải. Thay các phần tử ở dòng 4 của ma trận A bởi $-2,$ ta được ma trận $B = left( {begin{array}{*{20}{c}} 1&2&{ – 3}&4\ { – 1}&3&1&{ – m}\ { – 2}&{ – 2}&{ – 2}&{ – 2}\ { – 2}&{ – 2}&{ – 2}&{ – 2} end{array}} right)$ có định thức bằng 0 vì có hai dòng giống nhau và hai ma trận $A,B$ có các phần bù đại số của các phần tử dòng 4 giống nhau.

Vậy $det (B)=-2{{A}_{41}}-2{{A}_{42}}-2{{A}_{43}}-2{{A}_{44}}=0Leftrightarrow {{A}_{41}}+{{A}_{42}}+{{A}_{43}}+{{A}_{44}}=0.$

Ví dụ 7: Cho ma trận $A = left( {begin{array}{*{20}{c}} 1&2&3&4\ { – 2}&{ – 1}&4&1\ 3&{ – 4}&{ – 5}&6\ { – 4}&5&{ – 6}&7 end{array}} right).$ Tính ${{A}_{41}}+2{{A}_{42}}+3{{A}_{43}}+4{{A}_{44}}.$

Giải. Thay các phần tử ở dòng 4 của ma trận A lần lượt bởi $1,2,3,4$ ta được ma trận $B = left( {begin{array}{*{20}{c}} 1&2&3&4\ { – 2}&{ – 1}&4&1\ 3&{ – 4}&{ – 5}&6\ 1&2&3&4 end{array}} right)$ có định thức bằng 0 vì có hai dòng giống nhau và hai ma trận $A,B$ có các phần bù đại số của các phần tử dòng 4 giống nhau

Vậy $det (B)=1{{A}_{41}}+2{{A}_{42}}+3{{A}_{43}}+4{{A}_{44}}=0Leftrightarrow {{A}_{41}}+2{{A}_{42}}+3{{A}_{43}}+4{{A}_{44}}=0.$

Ví dụ 8: Cho D là một định thức cấp n có tất cả các phần tử của một dòng thứ i bằng 1. Chứng minh rằng:

  1. Tổng các phần bù đại số của các phần tử thuộc mỗi dòng khác dòng thứ i đều bằng 0.
  2. Định thức D bằng tổng phần bù đại số của tất cả các phần tử của nó.

Ví dụ 9: Tính định thức $left| {begin{array}{*{20}{c}} { – 2}&5&0&{ – 1}&3\ 1&0&3&7&{ – 2}\ 3&{ – 1}&0&5&{ – 5}\ 2&6&{ – 4}&1&2\ 0&{ – 3}&{ – 1}&2&3 end{array}} right|.$

Ví dụ 10: Tính định thức $left| {begin{array}{*{20}{c}} 1&{ – 2}&3&2&{ – 5}\ 2&1&2&{ – 1}&3\ 1&4&2&0&1\ 3&5&2&3&3\ 1&4&3&0&{ – 3} end{array}} right|.$

3. Định thức của ma trận tam giác

Định thức của ma trận tam giác bằng tích các phần tử nằm trên đường chéo chính

Thật vậy, đối với ma trận tam giác trên khai triển theo cột 1 có:

đối với ma trận tam giác dưới khai triển theo dòng 1.

4. Tính định thức dựa trên các tính chất định thức, công thức khai triển Laplace và biến đổi về ma trận tam giác

Ví dụ 10: Tính định thức $left| {begin{array}{*{20}{c}} a&b&{…}&b\ b&a&{…}&b\ {…}&{…}&{…}&{…}\ b&b&{…}&a end{array}} right|.$

Giải. Ta có:

$begin{array}{l} left| {begin{array}{*{20}{c}} a&b&{…}&b\ b&a&{…}&b\ {…}&{…}&{…}&{…}\ b&b&{…}&a end{array}} right|underline{underline {c2 + c3 + … + cn + c1}} left| {begin{array}{*{20}{c}} {a + (n – 1)b}&b&{…}&b\ {a + (n – 1)b}&a&{…}&b\ {…}&{…}&{…}&{…}\ {a + (n – 1)b}&b&{…}&a end{array}} right|\ = left( {a + (n – 1)b} right)left| {begin{array}{*{20}{c}} 1&b&{…}&b\ 1&a&{…}&b\ {…}&{…}&{…}&{…}\ 1&b&{…}&a end{array}} right|\ underline{underline { – {d_1} + {d_i}}} left( {a + (n – 1)b} right)left| {begin{array}{*{20}{c}} 1&b&{…}&b\ 0&{a – b}&{…}&b\ {…}&{…}&{…}&{…}\ 0&0&{…}&{a – b} end{array}} right| = left( {a + (n – 1)b} right){(b – b)^{n – 1}}. end{array}$

Hiện tại Vted.vn xây dựng 2 khoá học Toán cao cấp 1 và Toán cao cấp 2 dành cho sinh viên năm nhất hệ Cao đẳng, đại học khối ngành Kinh tế của tất cả các trường:

  1. Khoá: PRO S1 – MÔN TOÁN CAO CẤP 1 – ĐẠI SỐ TUYẾN TÍNH
  2. Khoá: PRO S2 – MÔN TOÁN CAO CẤP 2 – GIẢI TÍCH

Khoá học cung cấp đầy đủ kiến thức và phương pháp giải bài tập các dạng toán đi kèm mỗi bài học. Hệ thống bài tập rèn luyện dạng Tự luận có lời giải chi tiết tại website sẽ giúp học viên học nhanh và vận dụng chắc chắn kiến thức. Mục tiêu của khoá học giúp học viên đạt điểm A thi cuối kì các học phần Toán cao cấp 1 và Toán cao cấp 2 trong các trường kinh tế.

Sinh viên các trường ĐH sau đây có thể học được combo này:

– ĐH Kinh Tế Quốc Dân

– ĐH Ngoại Thương

– ĐH Thương Mại

– Học viện Tài Chính

– Học viện ngân hàng

– ĐH Kinh tế ĐH Quốc Gia Hà Nội

và các trường đại học, ngành kinh tế của các trường ĐH khác trên khắp cả nước…

Các phương pháp tính định thức của ma trận | Học toán online chất lượng cao 2022 | Vted

Các phương pháp tính định thức của ma trận | Học toán online chất lượng cao 2022 | Vted