Hoán vị, Chỉnh hợp, Tổ hợp và cách giải các dạng bài tập – Toán lớp 11
1. Lý thuyết
a) Hoán vị
– Cho tập A gồm n phần tử (n≥1). Khi xếp n phần tử này theo một thứ tự, ta được một hoán vị các phần tử của tập hợp A, (gọi tắt là một hoán vị của A).
– Số hoán vị của một tập hợp có n phần tử là Pn = n! = n(n – 1)(n – 2)…3.2.1.
– Đặc điểm: Đây là sắp xếp có thứ tự và số phần tử sắp xếp đúng bằng số phần tử trong nhóm (bằng n).
– Chú ý: Giai thừa: n! = n(n – 1)(n – 2)…3.2.1
Quy ước: 0! = 1; 1! = 1.
b) Chỉnh hợp
– Cho tập hợp A có n phần tử và cho số nguyên k, (1≤k≤n). Khi lấy k phần tử của A và sắp xếp chúng theo một thứ tự, ta được một chỉnh hợp chập k của n phần tử của A (gọi tắt là một chỉnh hợp n chập k của A).
– Số các chỉnh hợp chập k của một tập hợp có n phần tử là: Ank=n!(n−k)!.
– Một số quy ước: 0!=1, An0=1, Ann=n!
– Đặc điểm: Đây là sắp xếp có thứ tự và số phần tử được sắp xếp là k: 0≤k≤n.
c) Tổ hợp
Cho tập hợp A có n phần tử và cho số nguyên k, (1≤k≤n). Mỗi tập hợp con của A có k phần tử được gọi là một tổ hợp chập k của n phần tử của A.
– Số các tổ hợp chập k của một tập hợp có n phần tử là: Cnk=n!(n−k)!k!=Ankk!.
– Tính chất:
Cn0=Cnn=1Cnk=Cnn−k,(0≤k≤n)Cn+1k+1=Cnk+Cnk+1,(1≤k≤n)
– Đặc điểm: Tổ hợp là chọn phần tử không quan trọng thứ tự, số phần tử được chọn là k: 0≤k≤n
2. Các dạng bài tập
Dạng 1: Bài toán đếm số tự nhiên
Ví dụ 1. Từ các số 1; 2; 3; 4; 5; 6; 7. Có bao nhiêu số tự nhiên thỏa mãn
a) Số có 7 chữ số khác nhau
b) Số có 5 chữ số khác nhau
c) Số có 7 chữ số khác nhau và có chữ số 1 là hàng chục nghìn
d) Số có 7 chữ số khác nhau và chữ số 2 không ở hàng đơn vị
Lời giải
a) Số các số có 7 chữ số khác nhau được lập từ 7 chữ số trên là 7! = 5040
b) Số các số có 5 chữ số khác nhau được lập từ 7 chữ số trên là A75=2520
c) Số có 7 chữ số khác nhau và có chữ số 1 là hàng chục nghìn
Chữ số hàng chục nghìn có 1 cách chọn (là chữ số 1)
Các hàng khác, số cách chọn là một hoán vị của 6 chữ số còn lại: 6!
Vậy có 1.6! = 720 số có 7 chữ số khác nhau và có chữ số 1 là hàng chục nghìn.
d) Số có 7 chữ số khác nhau và chữ số 2 không ở hàng đơn vị
Số các số có 7 chữ số khác nhau là 7!
Ta lập số có 7 chữ số khác nhau có chữ số 2 ở hàng đơn vị
Chữ số hàng đơn vị có 1 cách chọn (là chữ số 2)
Các hàng khác, số cách chọn là một hoán vị của 6 chữ số còn lại: 6!
Số các số có 7 chữ số và chữ số 2 ở hàng đơn vị là: 1.6!
Vậy có 7! – 6! = 4320 số có 7 chữ số khác nhau và chữ số 2 không ở hàng đơn vị.
Ví dụ 2. Từ các chữ số 0; 1; 2; 3; 4; 5; 6; 7. Có thể lập được bao nhiêu số tự nhiên thỏa mãn
a) Số có 10 chữ số, trong đó chữ số 3 có mặt đúng 3 lần, các chữ số khác có mặt đúng một lần.
b) Số chẵn có 5 chữ số khác nhau.
c) Số có 6 chữ số khác nhau, trong đó chữ số 1 là hàng đơn vị.
d) Số có 6 chữ số khác nhau, trong đó chữ số 2 và 3 đứng cạnh nhau.
Lời giải
a) Giả sử số có 10 chữ số cần lập ở 10 vị trí như hình dưới
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
+ Số các số có 10 chữ số, chữ số 3 có mặt 3 lần, các chữ số khác có mặt đúng 1 lần (Kể cả chữ số 0 đứng đầu)
Chữ số 3 có mặt đúng 3 lần, ta chọn 3 vị trí để đặt số 3: có C103 cách chọn
Các chữ số khác có mặt đúng 1 lần là hoán vị của 7: có 7! cách chọn
Do đó có C103.7! số (kể cả số 0 đứng đầu).
+ Số các số có 10 chữ số, chữ số 3 có mặt 3 lần, các chữ số khác có mặt đúng 1 lần và chữ số 0 đứng đầu
Vị trí đầu tiên có 1 cách chọn (là chữ số 0)
Chữ số 3 có mặt đúng 3 lần, ta chọn 3 vị trí trong 9 vị trí còn lại để đặt số 3: có C93 cách chọn
Các chữ số khác có mặt đúng 1 lần là hoán vị của 6: có 6! cách chọn.
Do đó có C93.6!
Vậy có C103.7!−C93.6!=544320 số có 10 chữ số, trong đó chữ số 3 có mặt đúng 3 lần, các chữ số khác có mặt đúng một lần.
b) Gọi số abcde¯ là số chẵn có 5 chữ số trong các số trên
Vì abcde¯ là số chẵn nên e∈0;2;4;6
+ Trường hợp 1: e = 0
Số cách chọn a, b, c, d trong 7 số còn lại là A74
Do đó có A74.
+ Trường hợp 2: e∈2;4;6
Chọn e: có 3 cách chọn
Chọn a từ các số {1; 2; 3; 4; 5; 6; 7}{e}: có 6 cách chọn
Chọn b, c, d từ các số {0; 1; 2; 3; 4; 5; 6; 7}{a, e}: có A63
Do đó có 3.6.A63 số
Vậy có A74+3.6.A63=3000 số chẵn có 5 chữ số khác nhau được lập từ các chữ số trên.
c) Giả sử số có 6 chữ số cần lập ở 6 vị trí như hình dưới
(1)
(2)
(3)
(4)
(5)
(6)
Lập số có 6 chữ số khác nhau, chữ số 1 ở hàng đơn vị
Vị trí (6) có 1 cách chọn (là chữ số 1)
Vị trí (1) có 6 cách chọn (là các chữ số 2; 3; 4; 5; 6; 7)
Bốn vị trí còn lại là chỉnh hợp chập 4 của 6 số còn lại: có A64 số
Vậy có 1.6.A64=2160 số có 6 chữ số, trong đó chữ số 1 là hàng đơn vị.
d) Để lập số có số 2 và 3 đứng cạnh nhau ta ghép số 2 và 3 với nhau, đặt vào 1 vị trí.
Giả sử số có 6 chữ số cần lập ở 5 vị trí như hình dưới
(1)
(2)
(3)
(4)
(5)
Vị trí (1) có 6 cách chọn (là 1; 2 và 3; 4; 5; 6; 7)
Các vị trí còn lại có là chỉnh hợp chập 4 của 6 số còn lại: có A64
Ở vị chí chứa số 2 và 3: có 2! cách sắp xếp chữ số 2 và 3.
Vậy có 6.A64.2!=4230 số có 6 chữ số khác nhau, trong đó chữ số 2 và 3 đứng cạnh nhau.
Dạng 2: Bài toán xếp chỗ
Phương pháp giải:
* Sử dụng quy tắc cộng và quy tắc nhân
* Chú ý:
– Bài toán đếm yêu cầu sắp xếp phần tử A và B phải đứng cạnh nhau, ta bó (gộp) 2 phần tử làm 1, coi như chúng là 1 phần tử rồi sắp xếp.
– Bài toán đếm yêu cầu sắp xếp phần tử A và B không đứng cạnh nhau, ta đếm phần bù (Tức là đếm 2 phần tử A và B đứng cạnh nhau).
Ví dụ minh họa:
Ví dụ 1. Có 7 học sinh nữ và 3 học sinh nam. Ta muốn sắp xếp vào một bàn dài có 5 ghế ngồi. Hỏi có bao nhiêu cách sắp xếp để:
a) Sắp xếp tùy ý.
b) Các bạn nam ngồi cạnh nhau và các bạn nữ ngồi cạnh nhau.
c) 3 học sinh nam ngồi kề nhau.
d) Không có 2 bạn nam nào ngồi cạnh nhau.
Lời giải
a) Sắp xếp 10 bạn tùy ý là hoán vị của 10: có 10! cách xếp.
b) Xếp các 7 bạn nữ ngồi cạnh nhau và 3 bạn nam ngồi cạnh nhau. Ta ghép tất cả 7 bạn nữ vào 1 “bó”, 3 bạn nam vào 1 “bó”
Rồi mang sắp xếp 2 “bó” ta được 2! cách xếp.
Trong 7 bạn nữ: ta có 7! cách xếp
Trong 3 bạn nam: ta có 3! cách xếp
Vậy có 2! . 7! . 3! = 60480 cách xếp.
c) Xếp 3 bạn nam ngồi cạnh nhau. Ta ghép 3 bạn nam vào 1 “bó”
Rồi mang sắp xếp 7 bạn nữ và 1 “bó” ta được 8! cách xếp
Trong 3 bạn nam: ta có 3! cách xếp
Vậy có 8! . 3! = 241920 cách xếp.
d) Để xếp không có bạn nam nào ngồi cạnh nhau, ta sắp xếp 7 bạn nữ vào bàn dài trước: ta được 7! c&aacu